Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal

نویسندگان

  • Elahe Karimi Pasandideh
  • Babak Kakavandi
  • Simin Nasseri
  • Amir Hossein Mahvi
  • Ramin Nabizadeh
  • Ali Esrafili
  • Roshanak Rezaei Kalantary
چکیده

BACKGROUND In this work, the magnetite (Fe3O4) nanoparticles (MNPs) and silica-coated magnetite nanoparticles (SMNPs) were synthesized as adsorbents for removing humic acid (HA) from water resources. METHODS The adsorption processes were performed in batch experiments with which the influence of pH, reaction time, adsorbent dosage, initial concentrations of HA and temperature were investigated. Specific techniques were applied to characterize the features of both adsorbents (i. e. TECHNIQUES) (SEM, XRD, TEM, BET, EDX and VSM). RESULTS The maximum saturation magnetization for SMNPs was 30.2 emu/g, which made its separation from the solution by a magnetic field to be easier and faster. The HA adsorption process onto the both adsorbents were best described by the Freundlich isotherm and pseudo-second-order kinetic models. Highest adsorption efficiency of HA by MNPs an d SMNPs occurred at acidic conditions (pH ≈ 3). The mechanisms of adsorption process involved with a physisorption process such as (i. e. hydrogen bonding and electrostatic interaction). The predicted maximum monolayer adsorption capacities obtained by Langmuir isotherm model for MNPs and SMNPs were 96.15 and 196.07 mg/g, respectively. CONCLUSION Higher amount of HA adsorption onto the surfaces of SMNPs than MNPs surfaces was observed, reflecting that silica impregnated on MNPs enhances the efficiency of the adsorbent in removing HA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Double Shell Fe3O4 Cluster@Nonporous SiO2@Mesoporous SiO2 Nanocomposite Spheres and Investigation of their In Vitro Biocompatibility

Background: Multifunctional core-shell magnetic nanocomposite particles with tunable characteristics have been paid much attention for biomedical applications in recent years. A rational design and suitable preparation method must be employed to be able to exploit attractive properties of magnetic nanocomposite particles. Objectives: Herein, we report on a simple approach for the synthesis of m...

متن کامل

Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications

Objective(s): This paper describes coating of magnetite nanoparticles (MNPs) with amorphous silica shells.   Materials and Methods: First, magnetite (Fe3O4) NPs were synthesized by co-precipitation method and then treated with stabilizer molecule of trisodium citrate to enhance their dispersibility. Afterwards, coating with silica was carried out via a sol-gel approach in which the electrostati...

متن کامل

Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process

In this research, mercapto-silica coated magnetite (Fe3O4-SiO2-SH) has been prepared in aqueous solution through a simple approach so called a one-pot process. The Fe3O4-SiO2-SH was prepared in nitrogen condition by mixing magnetite, 3-mercaptopropyltrimethoxysilane (MPTMS), and sodium silicate (Na2SiO3) solution extracted from rice hull ash, and adjusting the pH of 7.0 using hydrochloric acid....

متن کامل

Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio ...

متن کامل

Fabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles

In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016